You are here: Home / Publications / Dr Linding, SLRI & MIT [work from 2005-2007] / Systematic discovery of in vivo phosphorylation networks.

Systematic discovery of in vivo phosphorylation networks.

Cell. 2007 Jun 29;129(7):1415-26. Epub 2007 Jun 14.
Linding R*, Jensen LJ*, Ostheimer GJ*, van Vugt MA, Jørgensen C, Miron IM, Diella F, Colwill K, Taylor L, Elder K, Metalnikov P, Nguyen V, Pasculescu A, Jin J, Park JG, Samson LD, Woodgett JR, Russell RB, Bork P*, Yaffe MB*, Pawson T*.

*: Equal Authorship

cell cover

Protein kinases control cellular decision processes by phosphorylating specific substrates. Thousands of in vivo phosphorylation sites have been identified, mostly by proteome-wide mapping. However, systematically matching these sites to specific kinases is presently infeasible, due to limited specificity of consensus motifs, and the influence of contextual factors, such as protein scaffolds, localization, and expression, on cellular substrate specificity. We have developed an approach (NetworKIN) that augments motif-based predictions with the network context of kinases and phosphoproteins. The latter provides 60%-80% of the computational capability to assign in vivo substrate specificity. NetworKIN pinpoints kinases responsible for specific phosphorylations and yields a 2.5-fold improvement in the accuracy with which phosphorylation networks can be constructed. Applying this approach to DNA damage signaling, we show that 53BP1 and Rad50 are phosphorylated by CDK1 and ATM, respectively. We describe a scalable strategy to evaluate predictions, which suggests that BCLAF1 is a GSK-3 substrate.




[Supplemental Information]



[Reseach Highlight - Nature Methods]

[Reseach Highlight - Nature Reviews Molecular Cell biology]

[Reseach Highlight - Nature Biotechnology]

[Reseach Highlight - Nature Chemical Biology]

[Editors Choice Science Signaling]